Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Life Sci ; 263: 118583, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33045212

RESUMO

Parental lifestyle has been related to alterations in the phenotype of their offspring. Obese sires can induce offspring insulin resistance as well as increase susceptibility to obesity. On the other hand, obese sires submitted to voluntary exercise ameliorate the deleterious metabolic effects on their offspring. However, there are no studies reporting the effect of programmed exercise training of lean sires on offspring metabolism. AIMS: This study aimed to investigate the role of swimming training of sires for 6 weeks on the offspring metabolic phenotype. MAIN METHODS: Male C57BL/6 mice fed a control diet were divided into sedentary and swimming groups. After the exercise, they were mated with sedentary females, and body weight and molecular parameters of the offspring were subsequently monitored. KEY FINDINGS: Swimming decreased the gene expression of Fasn and Acaca in the testes and increased the AMPK protein content in the testes and epididymis of the sires. The progeny presented a low weight at P1, which reached a normal level at P60 and at P90 the animals were challenged with HFD for 16 weeks. The male offspring of trained sires presented less body weight gain than the control group. The level of steatosis decreased in the male offspring from trained sires. The gene expression of Prkaa2, Ppar-1α and Cpt-1 was also increased in the liver of male offspring from trained sires. SIGNIFICANCE: Taken together, these findings suggest that paternal exercise training can improve the metabolic profile in the liver of the progeny, thereby ameliorating the effects of obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/prevenção & controle , Obesidade/complicações , Condicionamento Físico Animal/fisiologia , Animais , Pai , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Sedentário , Natação/fisiologia
2.
Mol Nutr Food Res ; 62(17): e1800283, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30001482

RESUMO

SCOPE: To test whether myeloid cells Tsc1 deletion and therefore constitutive activation of the nutrient sensor mTORC1 protects from high-fat diet (HFD)-induced obesity, glucose intolerance, and adipose tissue inflammation. METHODS AND RESULTS: Mice with Tsc1 deletion in myeloid cells (MTsc1KO) and littermate controls (MTsc1WT) were fed with HFD for 8 weeks and evaluated for body weight, glucose homeostasis, and adipose tissue inflammation. MTsc1KO mice were protected from HFD-induced obesity and glucose intolerance. MTsc1KO, however, displayed, independently of the diet, abnormal behavior, episodes of intense movement, and muscle spasms followed by temporary paralysis. To investigate whether obesity protection was due to myeloid cells Tsc1 deletion, bone marrow was transplanted from MTsc1WT and MTsc1KO into irradiated C57BL6/J mice. Mice transplanted with MTsc1KO bone marrow displayed reduced body weight gain, adiposity, and inflammation, and enhanced energy expenditure, glucose tolerance and adipose tissue M2 macrophage content upon HFD feeding, in the absence of abnormal behavior. In vitro, Tsc1 deletion increased in a mTORC1-dependent manner macrophage polarization to M2 profile and mRNA levels of fatty acid binding protein 4 and PPARγ. CONCLUSION: Constitutive mTORC1 activation in myeloid cells protects mice from HFD-induced obesity, adipose tissue inflammation, and glucose intolerance by promoting macrophage polarization to M2 pro-resolution profile and increasing energy expenditure.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células Mieloides/metabolismo , Obesidade/etiologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Tecido Adiposo/patologia , Tecido Adiposo/fisiologia , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica , Macrófagos/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Paniculite/metabolismo , Paniculite/patologia , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Aumento de Peso
3.
PLoS One ; 10(11): e0142183, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565621

RESUMO

Acute and chronic kidney injuries (AKI and CKI) constitute syndromes responsible for a large part of renal failures, and are today still associated with high mortality rates. Given the lack of more effective therapies, there has been intense focus on the use stem cells for organ protective and regenerative effects. Mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases of immune character, although there is still debate on its mechanism of action. Thus, for a greater understanding of the role of MSCs, we evaluated the effect of adipose tissue-derived stem cells (AdSCs) in an experimental model of nephrotoxicity induced by folic acid (FA) in FVB mice. AdSC-treated animals displayed kidney functional improvement 24h after therapy, represented by reduced serum urea after FA. These data correlated with cell cycle regulation and immune response modulation via reduced chemokine expression and reduced neutrophil infiltrate. Long-term analyses, 4 weeks after FA, indicated that AdSC treatment reduced kidney fibrosis and chronic inflammation. These were demonstrated by reduced interstitial collagen deposition and tissue chemokine and cytokine expression. Thus, we concluded that AdSC treatment played a protective role in the framework of nephrotoxic injury via modulation of inflammation and cell cycle regulation, resulting in reduced kidney damage and functional improvement, inhibiting organ fibrosis and providing long-term immune regulation.


Assuntos
Injúria Renal Aguda/patologia , Injúria Renal Aguda/terapia , Tecido Adiposo/citologia , Rim/patologia , Transplante de Células-Tronco , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Animais , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Ácido Fólico , Masculino , Camundongos , Células-Tronco/citologia , Ureia/sangue
4.
Cell Transplant ; 21(8): 1727-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22305061

RESUMO

Adipose tissue-derived stem cells (ASCs) are an attractive source of stem cells with regenerative properties that are similar to those of bone marrow stem cells. Here, we analyze the role of ASCs in reducing the progression of kidney fibrosis. Progressive renal fibrosis was achieved by unilateral clamping of the renal pedicle in mice for 1 h; after that, the kidney was reperfused immediately. Four hours after the surgery, 2 × 10(5) ASCs were intraperitoneally administered, and mice were followed for 24 h posttreatment and then at some other time interval for the next 6 weeks. Also, animals were treated with 2 × 10(5) ASCs at 6 weeks after reperfusion and sacrificed 4 weeks later to study their effect when interstitial fibrosis is already present. At 24 h after reperfusion, ASC-treated animals showed reduced renal dysfunction and enhanced regenerative tubular processes. Renal mRNA expression of IL-6 and TNF was decreased in ASC-treated animals, whereas IL-4, IL-10, and HO-1 expression increased despite a lack of ASCs in the kidneys as determined by SRY analysis. As expected, untreated kidneys shrank at 6 weeks, whereas the kidneys of ASC-treated animals remained normal in size, showed less collagen deposition, and decreased staining for FSP-1, type I collagen, and Hypoxyprobe. The renal protection seen in ASC-treated animals was followed by reduced serum levels of TNF-α, KC, RANTES, and IL-1α. Surprisingly, treatment with ASCs at 6 weeks, when animals already showed installed fibrosis, demonstrated amelioration of functional parameters, with less tissue fibrosis observed and reduced mRNA expression of type I collagen and vimentin. ASC therapy can improve functional parameters and reduce progression of renal fibrosis at early and later times after injury, mostly due to early modulation of the inflammatory response and to less hypoxia, thereby reducing the epithelial-mesenchymal transition.


Assuntos
Tecido Adiposo/citologia , Nefropatias/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Quimiocina CCL5/sangue , Quimiocinas/sangue , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Heme Oxigenase-1/metabolismo , Interleucina-10/metabolismo , Interleucina-1alfa/sangue , Interleucina-4/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Isquemia/complicações , Isquemia/patologia , Isquemia/terapia , Nefropatias/complicações , Nefropatias/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/sangue , Vimentina/genética , Vimentina/metabolismo
5.
Einstein (Säo Paulo) ; 9(1)jan.-mar. 2011. ilus
Artigo em Inglês, Português | LILACS | ID: lil-583369

RESUMO

Objective: To analyze the role of adipose tissue-derived stem cells in reducing the progression of renal fibrosis. Methods: adipose tissue-derived stem cells were isolated from C57Bl/6 mice and characterized by cytometry and differentiation. Renal fibrosis was established after unilateral clamping of the renal pedicle for 1 hour. Four hours after reperfusion, 2.105 adipose tissue-derived stem cells were administered intraperitoneally and the animals were followed for 24 hours during 6 weeks. In another experimental group, 2.105 adipose tissue-derived stem cells were administered only after 6 weeks of reperfusion, and they were euthanized and studied 4 weeks later. Twenty-four hours after reperfusion, the animals treated with adipose tissue-derived stem cells displayed reduced renal and tubular dysfunction and an increase of the regenerative process. Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1 were increased, despite the fact that adipose tissue-derived stem cells were not observed in the kidneys via SRY analysis. Results: In 6 weeks, the kidneys of non-treated animals decreased in size, and the kidneys of the animals treated with adipose tissue-derived stem cells remained at normal size and display less deposition of type 1 collagen and FSP-1. The renal protection observed in animals treated with adipose tissue-derived stem cells was followed by a drop in serum levels of TNF-alpha, KC, RANTES, and IL-1a. Treatment with adipose tissue-derived stem cells after 6 weeks, when the animals already displayed established fibrosis, demonstrated an improvement in functional parameters and less fibrosis analyzed by Picrosirius stain, as well as a reduction of the expression of type 1 collagen and vimentin mRNA.


Objetivo: Analisar o papel das células-tronco derivadas do tecido adiposo na redução da progressão da fibrose renal. Métodos: células-tronco derivadas do tecido adiposo foram isoladas de camundongos C57Bl/6 e caracterizadas por citometria e diferenciação. Fibrose renal foi instaurada após clampeamento unilateral do pedículo renal por 1 hora. Após 4 horas de reperfusão, 2.105 células-tronco derivadas do tecido adiposo foram administradas por via intraperitoneal, e os animais foram acompanhados por 24 horas e 6 semanas. Em outro grupo de experimentos, 2.105 células-tronco derivadas do tecido adiposo foram administradas somente após 6 semanas de reperfusão, e os animais foram sacrificados e estudados 4 semanas mais tarde. Após 24 horas da reperfusão, animais tratados com células-tronco derivadas do tecido adiposo apresentaram reduzida disfunção renal e tubular, além de aumento do processo regenerativo. Expressão renal de RNAm de IL-6 e TNF foi diminuída nos animais tratados com células-tronco derivadas do tecido adiposo, enquanto IL-4, IL-10 e HO-1 foram aumentadas, apesar de células-tronco derivadas do tecido adiposo não serem observadas nos rins por meio da análise SRY. Resultados: Em 6 semanas, os rins dos animais não tratados diminuíram; no entanto, os rins dos animais tratados com células-tronco derivadas do tecido adiposo permaneceram com o tamanho normal e apresentaram menor deposição de colágeno tipo 1 e FSP-1. Proteção renal observada em animais tratados com células-tronco derivadas do tecido adiposo foi seguida por redução nos níveis séricos de TNF-alfa, KC, RANTES e IL-1a. O tratamento com células-tronco derivadas do tecido adiposo após 6 semanas, quando os animais já apresentavam fibrose instalada, demonstrou melhora em parâmetros funcionais e menos fibrose, analisada pela coloração de Picrosirius, e redução da expressão de RNAm de colágeno tipo I e vimentina.


Assuntos
Animais , Camundongos , Fibrose , Inflamação , Células-Tronco Mesenquimais , Insuficiência Renal , Traumatismo por Reperfusão
6.
Einstein (Sao Paulo) ; 9(1): 36-45, 2011 Mar.
Artigo em Inglês, Português | MEDLINE | ID: mdl-26760551

RESUMO

OBJECTIVE: To analyze the role of adipose tissue-derived stem cells in reducing the progression of renal fibrosis. METHODS: adipose tissue-derived stem cells were isolated from C57Bl/6 mice and characterized by cytometry and differentiation. Renal fibrosis was established after unilateral clamping of the renal pedicle for 1 hour. Four hours after reperfusion, 2.105 adipose tissue-derived stem cells were administered intraperitoneally and the animals were followed for 24 hours during 6 weeks. In another experimental group, 2.105adipose tissue-derived stem cells were administered only after 6 weeks of reperfusion, and they were euthanized and studied 4 weeks later. Twenty-four hours after reperfusion, the animals treated with adipose tissue-derived stem cells displayed reduced renal and tubular dysfunction and an increase of the regenerative process. Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1 were increased, despite the fact that adipose tissue-derived stem cells were not observed in the kidneys via SRY analysis. RESULTS: In 6 weeks, the kidneys of non-treated animals decreased in size, and the kidneys of the animals treated with adipose tissue-derived stem cells remained at normal size and display less deposition of type 1 collagen and FSP-1. The renal protection observed in animals treated with adipose tissue-derived stem cells was followed by a drop in serum levels of TNF-α, KC, RANTES, and IL-1a. Treatment with adipose tissue-derived stem cells after 6 weeks, when the animals already displayed established fibrosis, demonstrated an improvement in functional parameters and less fibrosis analyzed by Picrosirius stain, as well as a reduction of the expression of type 1 collagen and vimentin mRNA. CONCLUSION: Treatment with adipose tissue-derived stem cells may deter the progression of renal fibrosis by modulation of the early inflammatory response, likely via reduction of the epithelial-mesenchymal transition.

7.
Lab Invest ; 90(5): 685-95, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20308984

RESUMO

One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1h. BMMCs were isolated from femurs and tibia, and after 6h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.


Assuntos
Células da Medula Óssea/citologia , Nefropatias/cirurgia , Rim/patologia , Leucócitos Mononucleares/citologia , Doença Aguda , Animais , Antígenos CD34/análise , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Transplante de Células/métodos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Fibrose/cirurgia , Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Imuno-Histoquímica , Imunofenotipagem , Isquemia/complicações , Rim/irrigação sanguínea , Nefropatias/etiologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...